
DSP Implementations for Accelerator Instrumentation

T. J. Shea
Brookhaven National Laboratory

Upton, NY 11973, USA

Abstract

Digital signal processing is now a fundamental
component of many instrumentation systems. By
presenting several example systems, this paper will
review the functions provided by digital signal
processing and discuss implementations on available
hardware. The hardware platforms can be divided into
three categories: reconfigurable computing systems
based on field programmable gate arrays, programmable
Digital Signal Processors (DSPs), and general purpose
microprocessors. The provided functions include data
rate reduction to decrease network load, local
calculations to decrease computational load, and local
real-time control. Although several examples will be
presented, they all represent similar position
monitoring applications that differ primarily in the
signal processing implementation. Finally, the relative
performance of the three implementations will be
compared. Benchmark results and the ease of
implementation will be discussed.

1 Introduction

 The application of digital signal processing to
accelerator instrumentation provides several benefits
inluding network load reduction, system modularization,
and real time feedback. Because modern measurement
systems tend to digitize signals near the source, high
data rates are produced that can overwhelm most control
system networks. By including digital filtering and local
buffering, the system designer maintains the stability
and accuracy inherent in a digital front end, yet provides
the control system with data at a useful rate. With signal
processing capability built into the system, the designer
is usually tempted to offload computations from the
control console level and perform them locally. This
practice can produce high performance, self contained
instruments, but developing for this deeply embedded
environment can be more challanging than
programming at the console level. In systems that
include beam in the loop, embedded digital processing is
an absolute requirement rather than a nice feature.
Because these systems typically have stringent
requirements on throughput and latency, they allow little
flexibility of implementation.

The designers of accelerator instrumentation apply
signal processing technology in an environment that
differs from most vendors’ target markets. In an industry

that signs contracts for 10,000 units per month, the
small number of processors required by the following
examples are not particularly interesting. Therefore,
instrumentation designers must follow the technology
to wherever the other markets drive it.

2 Functions provided by signal processing

Digital signal processing provides features that may
be catagorized into three functional groups: data
reduction, local calculation, and real-time feedback. The
first two functions are most useful in the data acquisition
applications that typify accelerator instrumentation.

2.1 Data reduction

 A current trend in instrumentation design is to push
digitization closer to signal source. Although
measurement performance benefits, this technique
generally leads to increased data rates that could
overwhelm the control system network. Network load
can be reduced by locally filtering or signal averaging
the raw data stream. Additionally, the signal processing
subsystem could provide circular data buffering to
produce a virtual flight recorder. A subset of this data is
then sent to the console level in real time while the
entire buffer is delivered only after acquisition has
stopped.

2.2 Local calculation

By performing calculations locally, the network load
is not necessarily reduced, but some computational load
is removed from the higher levels of control system.
This can also lead to a convenient modularity whereby
the system becomes a self-contained instrument. Early
in the life of a system, during fabrication and
installation, built-in self test can reduce the need for
dedicated test equipment. During operations, this feature
allows the system to produce its own calibration data and
apply it to the data stream.

2.3 Real time feedback

In systems that require real time feedback, embedded
signal processing is more than a convenience. These
systems commonly include beam in the feedback loop.
Therefore, deterministic latency is usually desired.
Feedback can also be used in data acquisition

applications to control thermally induced drifts, or to
automatically adjust gains and offsets.

3 Three implementations

For the purposes of this paper, all implementations
will be catagorized into three types:

General purpose microprocessor - Popular
examples include the Intel Pentium, and the
Motorola/IBM PowerPC.

Programmable DSP - Floating point examples
include the TI 'C40, and the Analog Devices SHARC.
Fixed point examples include the Motorola 56k, and the
AT&T DSP16x families.

Configurable hardware - These implementations
usually employ in-system programmable gate arrays by
Xilinx, Altera, and several others.

These three implementations offer a tradoff between
performance and flexibility. The usual assumption is
that the high performance gate arrays offer limited
flexibility while the very flexible software-based
implementations running on general purpose processors
suffer from low performance. The programmable DSPs
should fall somewhere in the middle. These assumptions
seem to be born out in practice as the following
examples will show. However, recent benchmarks reveal
some surprises.

3.1 General purpose microprocessor

Most of these processors now have a complex
architecture that includes deep pipelines and superscaler
features. Because of this complexity, applications are
best programmed in a higher level language. Hand
optimization in assembly can be very challenging so
the programmer usually relies on the compiler to produce
executables that will avoid pipeline stalls and keep the
multiple execution units busy. These features all lead to
high average performance in complex calculations, but
they also lead to unpredictable execution times. Because
of this, cycle accurate simulators are rarely available.
This nondeterministic behaviour also requires that the

system designer leave plenty of processing headroom
for time critical applications. Luckily, many
instrumentation systems act as data acquisition systems
with latencies bounded by human response times. These
processors tend to have a wide variety of mature
development tools available. Full-featured operating
systems are also available that can ease development and
debugging.

In the typical instrumentation system, a general
pupose processor would usually be purchased as part of a
board level solution running a real time kernal. Several
systems use LabVIEW or similar software running on
PCs that can be rack mounted or purchased as embedded
VME, VXI, or CPCI boards. The CPU could also be
shared with the control system front end.

As an example of this implementation type, consider
a position monitor system at Jefferson Lab[1][2]. Figure
1 depicts a block diagram of the upgraded switched
electrode electronics and its corresponding readout
system. This application demonstrates the data reduction
and local calculation functions that is provided by
digital signal processing. Gain control feedback could
be provided in the future. Four position monitors are
serviced by each VMIC digitizer board. The digitizer
board resides in VME and provides a continous, double
buffered data stream. A commercial single board
computer contains the processor that runs both the
position monitor software and the EPICS IOC software.
The position monitor software is interrupt driven at 15
Hz, coded entirely in C, and modularized into multiple
VXWorks processes. It performs the usual gain and
offset corrections, position calculations, signal
averaging, and buffering. Hardware efficiency and
integration are the hallmarks of this system.

3.2 Programmable DSP

In contrast to the complex processors discussed
above, programmable digital signal processors rely on
simple architectures that lead to deterministic execution
times. Therefore, cycle-accurate simulators are available
for nearly all DSPs. While the general-purpose
processors are nice matches for current compiler
technologies, typical DSPs have few compiler-friendly

MVMEx
with 68040
processor

Switched
Electrode

Electronics

VMIC3115
12 bit, 4ch

ADC
digital I/O

about 1 record/s
to requester

gain settings
(slow)

7680 records/s/BPM
(15 packets/s)

3 X

VME

Figure 1. The upgraded position monitor system at Jefferson Lab.

features. As an alternative, they allow straightforward
assembly optimization of most signal processing
algorithms. In fact, several features such as circular and
bit reversed addressing are included exclusively to
support digital filtering and FFT algorithms.
Unfortunately, some of these features do not map well to
the C language, so inline assembly or prebuilt libraries
are used. Development environments for these
processors tend to support simple applications, but
most lack the tools that have become standard for
developing large, modular applications.

 Current instrumentation applications sometimes
incorporate commercially available board level
solutions. To reduce cost, systems requiring more than a
few processors usually embed the DSP in system-specific
circuitry. In these cases, the incremental cost is low and
the DSP can sometimes reduce the cost further by
replacing dedicated logic. In order of decreasing
popularity, I/O interfaces include: hardwired, DSP-

specific ports, IP/PMC, proprietary mezzanine, and
system bus.

A specific example that takes advantage of DSPs is the
SLAC PEP II Position Monitor Module[3][4] shown in
Figure 2. Hundreds of these modules are distributed
throughout the tunnel and each services four BPM
channels. In contrast to the previous example, the
processor runs no operating system and the software
runs in a single thread utilizing polled interrupts. The
real-time data buffering code is written in assembly, but
all else is written in C. The functionality is similar to
the Jefferson Lab system and includes data correction,
position calculation, signal averaging, and calibration.
Although the processor is deeply embedded, new code
can be remotely downloaded into the onboard EEPROM.
This implementation interfaces a modern
instrumentation system to a mature control system.
With its embedded DSP subsystem, each module
functions as a self contained instrument.

3.3 Configurable hardware

If the general purpose processors have complex
architecture, and the programmable DSPs have a simple
architecture, then without significant exaggeration,
configurable hardware could be described as having no
architecture. This type of implementation normally uses
fine grained in-system programmable gate arrays. Faced
with a sea of gates, the designer has complete
architectural freedom. In reality, most designers will
make use of intellectual property supplied as
synthesizable VHDL or vendor supplied macrocells.
Recently, several vendors have begun offering signal
processing libraries for their gate arrays. Current design
tools still require significant expertise. Design entry
methods include schematic capture, VHDL (or Verilog)
coding followed by logic synthesis, and synchronous
data flow diagramming. None of these tools approaches
the convenience of the previously discussed

Figure 2. PEP II position monitor data acquisition
diagram.

Figure 3. Brookhaven AGS transverse damper.

analog
front
end 4.5 MHz

IIR
LPF

ADC s damping
LUT

position
LUT

FIFO
FIFO

pickup

kicker

136 kHz burst,
1000 turns

8 14 bit samples
C
A
M
A
C

local RAM
32k x 32

system
control

ADC
subsystem

'C31
DSP

int int

Dual port
memory
16k x 16

Buffer

EEPROM
32k x 16

1 Hz max.
request rate

development systems, although some more advanced
environments are now emerging from the universities.

Because standard interfaces can add significant
complexity, configurable hardware is usually embedded
within the application specific circuitry. Exceptions are
beginning to appear in the form of commercial Industry
Packs and PCI Mezzanine Cards that include user
configurable gate arrays. Reconfiguration times are
usually much less than a one second. This is fine for
debugging, upgrading, and mode switching, but the time
must be reduced even further to enable on the fly
hardware reuse.

The AGS transverse damper[5] shown in Figure 3 is an
instrumentation system that incorporates programmable
logic in the signal processing chain. As in the previous
examples, the signal begins in a position monitor
electrode. Unlike those examples, this system also
provides feedback and therefore must meet strict
requirements on throughput and latency. Since orbit
motion must be rejected at or below the synchrotron
frequency, the output of the digital low pass filter is
subtracted from the 4.5 MSa/s data stream. The filter is
an IIR implementation that makes efficient use of a
small logic array. Other functions, such as position
calculation utilize lookup tables (LUTs) to maintain the
required throughput.

4 Benchmarks

Since performance is such an important selection
criterion for signal processing technology, this paper
concludes with two benchmark summaries. The first is
the ubiquitous FFT and the second is a simple set of
operations found in most of the examples above.

A compilation of published benchmark
results[6][7][8] is shown in Figure 4. The horizontal

axis shows the time to compute a 256 point FFT
normalized to the TI TMS320C54 fixed point DSP.
Although the results were obtained from a several
sources, every attempt was made to correctly normalize
and obtain a valid comparison. All benchmarks were run
at the device’s native resolution and in its native format.
As expected, the dedicated hardware shows the best
performance. Surprisingly, the general purpose
processors are now faster than most DSPs at this
fundemental signal processing task. This is due to the
recent improvements in the general-purpose processors’
ALUs and to the clock speed advantage that these
processors currently enjoy.

After seeing these results, the author organized some
quick and dirty benchmarking at Brookhaven National
Laboratory. The benchmark algorithm performs the
following operations:

• read a value from zero wait state memory

• apply upper and lower limit checks

• apply third order correction

• accumulate for averaging

• check flag and branch

These operations are relevant for several systems at
BNL and most are present in the previous examples.
Figure 5 shows the maximum throughput obtained on
several platforms. Again, the hardware solution exhibits
the highest performance. Although the gate array cannot
be clocked as fast as the other processors, this
implementation makes use of distributed, pipelined
logic to boost performance. Two programmable DSP
systems were available for testing and they were
outperformed by most of the general-purpose
processors. The benchmark was also implemented in

2.06

1.51

1.06

1.00

0.79

0.76

0.44

0.43

0.10

0.02

0.02

TMS320C31*

AT&T DSP1627

DSP56002

TMS320C54x

ADSP-21062*
Pentium, 200 MHz*

PowerPC 604e, 200 MHz*

Pentium MMX, 200 MHz

PDSP16116 & Altera

Sharp LH9124 (ASIC)

Multiple PDSP16116 & Altera

0.00 0.50 1.00 1.50 2.00 2.50
Relative execution time (normalized to TMS320C54x)

General Purpose µPs

Programmable DSPs

Hardware

* Floating point

Figure 4. Execution time for a 256 point FFT.

LabVIEW since the RHIC instrumentation group uses
this environment to test prototype signal processing
functions. Performance was near the bottom of the pack,
but still respectable considering the high level
development environment.

Of course, reporting the raw performance on small
benchmarks does not tell the entire story. The ease of
implementation for the latter benchmark was also noted.
Development in C and LabVIEW took less than one
hour. The C implementation ported easily although it
had to be adapted to some platform specific libraries for
timing. The resulting LabVIEW library ported flawlessly
across all supported platforms. Development of the
fixed-point assembly program took a bit longer to
develop than the C version and the programmer did not
have time to fully optimize it. The VHDL based gate
array implementation took several hours to develop and
was the most difficult to debug. The I/O performance was
not explicitly tested, but a quick check on some
platforms showed that performance was significantly
degraded by VME access. The best system throughput
and latency is probably still attained by embedding the
processor within the application specific circuitry. As
noted above, instrumentation systems constructed in
this manner usually incorporate configurable hardware or
programmable DSPs.

5 Acknowledgments

The quick and dirty benchmarking was performed by
A. Campbell, C. Degen, L. Hoff, W. MacKay, J. Mead,
and D. Shea.

The author is also grateful for enlightening
discussions with the following individuals: E. Barsotti,
C. Brayet, L. Hendrickson, M. Keesee, G. Vismara, T.

Roser, W. A. Ryan, R. Santemaria, H. Schmickler, G.
Smith, and S. Smith.

This work was supported by the U.S. Department of
Energy.

6 References

[1] T. Powers, et. al., “Design, Commissioning, and
Operational Results of Wide Dynamic Range BPM
Switched Electrode Electronics”, Proc. of the 7th
Accelerator Instrumentation Workshop, Argonne,
IL, May 1996, AIP Conf. Proc. No. 390 (1997).

[2] M. M. Keesee, private communication.

[3] G. R. Aiello, et. al., “Beam Position Monitor
System for PEP-II”, Proc. of the 7th Accelerator
Instrumentation Workshop, Argonne, IL, May
1996, AIP Conf. Proc. No. 390 (1997).

[4] L. Hendrickson, private communication.

[5] G. A. Smith, et.al., “Transverse Beam Dampers for
the Brookhaven AGS”, Proc. of the 5th Accelerator
Instrumentation Workshop, Sante Fe, NM,
October 1993, AIP Conf. Proc. No. 319 (1994).

[6] G. Blalock, “Microprocessors Outperform DSPs
2:1”, Microprocessor Report, Volume 10, Number
17 (1996).

[7] P. Lapsley, “DSP Benchmarks: Latest Findings”,
The 1996 DSPx Exhibition and Symposium, San
Jose, CA, March 1996.

[8] R. J. Peterson and B. L. Hutchings, “An
Assessment of the Suitability of FPGA-Based
Systems for use in Digital Signal Processing”,
Proc. of the 5th International Workshop on Field-
Programmable Logic and Applications, Oxford,
England, August 1995.

0.21

0.49

0.82

0.84

1.55

1.7

1.83

2

3.9

15.3

19.5

56.5

Sun IPX, Sparc (g++)

Sun, Ultra-1 (LabVIEW)

PowerMac, 120 MHz 604 (LabVIEW)

Win95, 200 MHz Pentium (LabVIEW)

Motorola 80 MHz 56301 (assembly)

Spectrum VME, 50 MHz TI 'C40 (C)

SGI, 150 MHz R4400 (g++)

Sun, Ultra-1 (g++)

MVME, 100 MHz PPC603 (g++)

PowerMac, 200 MHz PPC604e (MW C)

Linux, 266 MHz Pentium II (g++)

Altera 10K100 68 MHz pipelined

0 10 20 30 40 50 60
Sustained sample rate (MHz)

General Purpose µPs

Programmable DSPs

Hardware

Figure 5. Results of a quick and dirty benchmark performed at BNL.

